Product Description
Product Description
Cast iron V belt pulley Cast Iron with Taper bore
With more than 15 years’ experience, high-precision equipment and strict management system, CIMO can provide V belt pulley for you with stable quality and best service.
Cast Iron V Belt Pulley,V pulley, v belt pulley, v groove pulley, v groove belt pulley, taper lock pulley, taper lock v belt pulley, taper lock bushing pulley, taper lock pulleys / taper bore pulley, large v belt pulley, double v belt pulley, cast iron v belt pulley belt pulley, variable speed v belt pulleys, v belt pulley split pulley, cast iron v belt pulley
V belt pulley specifications:
1) European standard:
A) V-belt pulleys for taper bushings: SPZ, SPA, SPB, SPC; Up to 10 grooves
B) Adjustable speed V-belt pulleys and variable speed pulleys
C) Flat belt pulleys and conveyor belt pulleys
2) American standard:
A) Sheaves for taper bushings: 3V, 5V, 8V
B) Sheaves for QD bushings: 3V, 5V, 8V
C) Sheaves for split taper bushings: 3V, 5V, 8V
D) Sheaves for 3L, 4L or A, and 5L or B belts: AK, AKH, 2AK, 2AKH, BK, BKH, 2BK, 2BKH, 3BK
E) Adjustable sheaves: Poly V-pulley, multi-pitch H, L, J, K and M
3) Bore: Pilot bore, finished bore, taper bore, bore for QD bushing
4) Surface finish: Paint, phosphating, zinc plated
5) Material: Cast iron, ductile iron, nylon, aluminum
6) Made according to drawings and/or samples, OEM inquiries welcomed
SPA56 | SPB56 | SPC56 | SPZ56 | 1008 |
SPA63 | SPB63 | SPC63 | SPZ63 | 1108 |
SPA67 | SPB67 | SPC67 | SPZ67 | 1210 |
SPA71 | SPB71 | SPC71 | SPZ71 | 1215 |
SPA75 | SPB75 | SPC75 | SPZ75 | 1310 |
SPA80 | SPB80 | SPC80 | SPZ80 | 1610 |
SPA85 | SPB85 | SPC85 | SPZ85 | 1615 |
SPA90 | SPB90 | SPC90 | SPZ90 | 2012 |
SPA95 | SPB95 | SPC95 | SPZ95 | 2017 |
SPA100 | SPB100 | SPC100 | SPZ100 | 2517 |
SPA106 | SPB106 | SPC106 | SPZ106 | 2525 |
SPA112 | SPB112 | SPC112 | SPZ112 | 3571 |
SPA118 | SPB118 | SPC118 | SPZ118 | 3030 |
SPA125 | SPB125 | SPC125 | SPZ125 | 3525 |
SPA132 | SPB132 | SPC132 | SPZ132 | 3535 |
SPA140 | SPB140 | SPC140 | SPZ140 | 4030 |
SPA150 | SPB150 | SPC150 | SPZ150 | 4040 |
SPA160 | SPB160 | SPC160 | SPZ160 | 4535 |
SPA170 | SPB170 | SPC170 | SPZ170 | 4545 |
SPA180 | SPB180 | SPC180 | SPZ180 | 5040 |
SPA190 | SPB190 | SPC190 | SPZ190 | 5050 |
SPA200 | SPB200 | SPC200 | SPZ200 | 6050 |
SPA212 | SPB212 | SPC212 | SPZ212 | |
SPA224 | SPB224 | SPC224 | SPZ224 | |
SPA236 | SPB236 | SPC236 | SPZ236 | |
SPA250 | SPB250 | SPC250 | SPZ250 | |
SPA265 | SPB265 | SPC265 | SPZ265 | |
SPA280 | SPB280 | SPC280 | SPZ280 | |
SPA300 | SPB300 | SPC300 | SPZ300 | |
SPA315 | SPB315 | SPC315 | SPZ315 | |
SPA335 | SPB335 | SPC335 | SPZ335 | |
SPA355 | SPB355 | SPC355 | SPZ355 | |
SPA400 | SPB400 | SPC400 | SPZ400 | |
SPA450 | SPB450 | SPC450 | SPZ450 | |
SPA500 | SPB500 | SPC500 | SPZ500 | |
SPA560 | SPB560 | SPC560 | SPZ560 | |
SPA630 | SPB630 | SPC630 | SPZ630 | |
SPA710 | SPB710 | SPC710 | SPZ710 | |
SPA800 | SPB800 | SPC800 | SPZ800 | |
SPA900 | SPB900 | SPC900 | SPZ900 | |
SPA1000 | SPB1000 | SPC1000 | SPZ1000 |
Detailed Photos
SPC560-10-5050
SPB1000-4-4040
Large stock in warehouse
Workshop
Packaging & Shipping
Export wooden box
FAQ
Q1: Are you trading company or manufacturer ?
A: We are factory.
Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days
2.Production Lead-times: 30-45 days after order confirmed.
Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO |
---|---|
Pulley Sizes: | Type A |
Manufacturing Process: | Casting |
Material: | Iron |
Surface Treatment: | Phosphated |
Application: | Chemical Industry, Grain Transport, Mining Transport, Power Plant |
Customization: |
Available
| Customized Request |
---|
What are the maintenance requirements for belt pulleys in industrial settings?
In industrial settings, proper maintenance of belt pulleys is essential to ensure their optimal performance, longevity, and safe operation. Here’s a detailed explanation of the maintenance requirements for belt pulleys in industrial settings:
1. Regular Inspection: Belt pulleys should be inspected regularly to identify any signs of wear, damage, or misalignment. Inspect the pulleys for cracks, corrosion, excessive wear on the grooves, or any other visible abnormalities. Check for proper alignment by examining the position of the pulleys relative to each other and their corresponding belts. Regular inspections help detect issues early on and prevent further damage or failures.
2. Lubrication: Proper lubrication is crucial for the smooth operation of belt pulleys. Lubricate the pulley bearings according to the manufacturer’s recommendations. This helps reduce friction, heat generation, and wear on the bearings. Use the appropriate lubricant and follow the recommended lubrication intervals to ensure optimal performance and extend the life of the pulleys.
3. Tension Adjustment: Maintaining proper belt tension is vital for the efficient and reliable operation of belt pulleys. Check the tension of the belts regularly using the manufacturer’s guidelines or recommended tensioning devices. Adjust the tension as needed to ensure the belts are neither too loose nor too tight. Proper tensioning allows for effective power transmission, minimizes belt slippage, and reduces wear on the belts and pulleys.
4. Belt Replacement: Over time, belts may wear out or become damaged. Regularly inspect the belts for signs of wear, cracking, fraying, or excessive stretching. If any of these issues are present, replace the belts promptly with new ones of the correct size and type. Using worn or damaged belts can lead to reduced performance, increased risk of pulley damage, and potential system failures.
5. Cleaning: Keep the belt pulleys clean and free from debris, dust, and dirt that may accumulate over time. Use appropriate cleaning methods, such as brushing or compressed air, to remove any contaminants that could affect the pulley’s performance or the grip of the belts. Clean pulleys contribute to better belt traction, reduce the risk of slippage, and improve overall system efficiency.
6. Alignment Correction: Proper pulley alignment is crucial for efficient power transmission and to prevent premature wear. If misalignment is detected during inspections or if the belts are not running smoothly, take corrective measures to align the pulleys correctly. Use alignment tools, such as laser alignment devices, to ensure precise alignment of the pulleys. Proper alignment minimizes belt wear, reduces noise and vibration, and extends the life of the pulleys and belts.
7. Safety Measures: When performing maintenance on belt pulleys, always adhere to safety procedures. Follow lockout/tagout protocols to isolate the equipment from power sources before inspecting or working on the pulleys. Use appropriate personal protective equipment (PPE) to protect against potential hazards. Ensure that maintenance personnel are trained in safe maintenance practices and are familiar with the specific procedures for working with belt pulleys.
8. Record Keeping: Maintain a record of maintenance activities and inspections performed on belt pulleys. This includes dates of inspections, lubrication, tension adjustments, belt replacements, and any corrective actions taken. Keeping a maintenance log helps track the history of maintenance activities, identify recurring issues, and plan future maintenance tasks effectively.
In summary, the maintenance requirements for belt pulleys in industrial settings include regular inspections, proper lubrication, tension adjustment, belt replacement, cleaning, alignment correction, adherence to safety measures, and maintaining a maintenance record. By following these maintenance requirements, industrial facilities can ensure the optimal performance, longevity, and safe operation of belt pulleys, contributing to the overall efficiency and reliability of their industrial processes.
What types of belts are commonly used with belt pulleys?
Several types of belts are commonly used in conjunction with belt pulleys for power transmission in various applications. The choice of belt depends on factors such as the specific requirements of the machinery, the desired power transmission characteristics, environmental conditions, and the type of pulley system being used. Here are some of the most commonly used types of belts:
1. V-Belts: V-belts, also known as Vee belts, are one of the most widely used types of belts with belt pulleys. They have a trapezoidal cross-section and typically feature a fabric cover and a rubber-like compound. V-belts are known for their high grip and power transmission capabilities, making them suitable for applications with moderate to high loads and speeds. They are commonly used in industries such as automotive, industrial machinery, and HVAC systems.
2. Timing Belts: Timing belts, also called synchronous belts, have toothed profiles on the inner side that engage with corresponding teeth on the pulley. This toothed design provides precise power transmission and prevents slippage. Timing belts are commonly used in applications that require precise synchronization of shafts and accurate positioning, such as in robotics, printing machinery, and automotive engines.
3. Flat Belts: Flat belts have a rectangular cross-section and are typically made of materials such as rubber, fabric, or synthetic compounds. They are flexible and can be easily customized to various lengths. Flat belts are commonly used in applications where high speeds and low power transmission requirements are present, such as in conveyor systems, textile machinery, and packaging equipment.
4. Round Belts: Round belts, also known as round O-ring belts, are circular belts made of materials such as rubber or urethane. They are flexible and can be easily joined to form endless loops. Round belts are commonly used in applications that require a lightweight and flexible power transmission solution, such as in small appliances, office equipment, and material handling systems.
5. Ribbed Belts: Ribbed belts, also called multi-rib belts or serpentine belts, have a ribbed or grooved design on the inner side. These ribs engage with corresponding grooves on the pulley, providing increased contact area and improved power transmission efficiency. Ribbed belts are commonly used in automotive engines, where they drive multiple accessories such as alternators, power steering pumps, and air conditioning compressors.
6. Variable Speed Belts: Variable speed belts, also known as adjustable speed belts or link belts, are made of individual links or segments that can be easily connected or disconnected to adjust the belt length. This allows for stepless speed variation and flexibility in power transmission. Variable speed belts are commonly used in applications where speed adjustment is required, such as in milling machines, woodworking equipment, and industrial conveyors.
These are just a few examples of the types of belts commonly used with belt pulleys. Each type of belt has its own unique characteristics and is suitable for specific applications based on factors such as load capacity, speed requirements, precision, and environmental conditions. The selection of the appropriate belt is crucial to ensure efficient and reliable power transmission in the machinery and equipment utilizing belt pulleys.
How does a belt pulley function in power transmission?
A belt pulley plays a crucial role in power transmission by enabling the transfer of rotational motion and torque between rotating shafts. It functions as a mechanical device that connects the driving shaft to the driven shaft through a belt or a rope. The rotational motion of the driving shaft is transmitted to the driven shaft via the belt pulley, allowing power to be transferred from one shaft to another. Here’s a detailed explanation:
A belt pulley functions in power transmission through the following process:
- The driving shaft, which is typically connected to a motor or an engine, rotates and generates rotational motion and torque.
- The belt pulley is mounted on the driving shaft, and its grooved rim is designed to engage with a belt or a rope.
- A belt or a rope is wrapped around the groove of the belt pulley, creating a secure connection between the pulley and the belt.
- As the driving shaft rotates, the belt or rope, in contact with the grooved rim of the pulley, starts to move.
- The movement of the belt or rope causes the belt pulley to rotate.
- Since the belt pulley is connected to the driven shaft, which is the output shaft of the system, the rotational motion of the pulley is transferred to the driven shaft.
- Consequently, the driven shaft starts to rotate at the same speed and direction as the driving shaft.
- The rotational motion and torque generated by the driving shaft are effectively transmitted to the driven shaft through the belt pulley and the belt or rope.
It’s important to note that the design and configuration of the belt pulley, along with the belt or rope, are essential for efficient power transmission. The groove profile of the pulley should match the belt or rope profile to ensure proper engagement and prevent slippage. The tension in the belt or rope should be appropriately adjusted to maintain a secure connection between the pulley and the belt. Additionally, the size and ratio of the pulleys connected by the belt can be adjusted to control the speed and torque output, providing flexibility in power transmission.
In summary, a belt pulley functions in power transmission by connecting the driving shaft to the driven shaft through a belt or a rope. It transfers the rotational motion and torque generated by the driving shaft to the driven shaft, allowing power to be transmitted between the two shafts. The design, configuration, and tensioning of the belt and the pulley are crucial for efficient and reliable power transmission in mechanical systems.
editor by CX
2024-04-16