Tag Archives: belt pulley

China manufacturer Poly Chain Gt 2 Timing Belt Pulley pulley drive

Product Description

CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars / Timing Bars. Standard and non-standard pulleys according to drawings are available.

Types of material:
  1. AlCuMgPb 6061 6082 Aluminum Timing Pulley
  2. C45E 1045 S45C Carbon Steel Timing Pulley
  3. GG25 HT250 Cast Iron Timing Pulley
  4. SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
  5. Other material on demand, such as cooper, bronze and plastic
 
Types of surface treatment
 1.  Anodized surface -Aluminum Pulleys
 2.  Hard anodized surface — Aluminum Pulleys
 3.  Black Oxidized surface — Steel Pulleys
 4. Zinc plated surface — Steel Pulleys
 5. Chromate surface — Steel Pulleys;  Cast Iron Pulleys
 6. Nickel plated surface –Steel Pulleys;  Cast Iron Pulleys 
 
Types of teeth profile

Teeth Profile Pitch
HTD 3M,5M,8M,14M,20M
AT AT5,AT10,AT20
T T2.5,T5,T10
MXL 0.08″(2.032MM)
XL 1/5″(5.08MM)
L 3/8″(9.525MM)
H 1/2″(12.7MM)
XH 7/8″(22.225MM)
XXH 1 1/4″(31.75MM)
STS STPD S2M,S3M,S4.5M,S5M,S8M,S14M
RPP RPP5M,RPP8M,RPP14M,RPP20M
PGGT PGGT  2GT, 3GT and 5GT
PCGT GT8M,GT14M

 
Types of pitches and sizes

Imperial Inch Timing Belt Pulley,
1.     Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2.  Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3.  Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4.  Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5.  Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6.  Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7.  Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8.  Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9.  Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10.  Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11.  Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12.  Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13.  Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;

Metric Timing Belt Pulley T and AT
1.  Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60; 
2.   Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60; 
3.   Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60; 
4.   Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60; 
5.   Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60; 
6.   Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60; 
7.   Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60; 
8.   Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9.  Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60; 
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60; 
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60; 
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60; 
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
  
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M 
1.  HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.  HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.  HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.  HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
         14M-115; 14M-170

Metric Timing Belt Pulleys for Poly Chain GT2 Belts 
1.      PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62; 
2.      PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;

Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT 
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm 
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm 
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm

OMEGA RPP HTD Timing Pulleys 
1.   RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.   RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.   RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.   RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
     14M-115; 14M-170 .

Ubet Machinery is also competetive on these power transmission components.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: Timing
Manufacturing Process: Sawing
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Order Sample

Normally sample order can be ready in 15 days
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt pulley

How are belt pulleys utilized in the production of electronics and semiconductors?

In the production of electronics and semiconductors, belt pulleys play a crucial role in various manufacturing processes. They are utilized in different stages of production to facilitate precision, efficiency, and reliability. Here’s a detailed explanation of how belt pulleys are utilized in the production of electronics and semiconductors:

1. Conveyor Systems: Belt pulleys are commonly used in conveyor systems within electronics and semiconductor manufacturing facilities. These conveyor systems transport components, products, or wafers between different stages of production, such as assembly, testing, and packaging. Belt pulleys are utilized to drive the conveyor belts, ensuring smooth and controlled movement of the materials or products. They contribute to the efficient flow of production, allowing for continuous and automated handling of electronic components and semiconductor wafers.

2. Wafer Handling: Belt pulley systems are employed in the handling and processing of semiconductor wafers. These wafers, which serve as the base material for electronic devices, need to be transferred between various equipment and processing stations. Belt pulleys, along with precision belts, are used to grip and transport the delicate and flat wafers. The pulleys ensure accurate positioning and controlled movement of the wafers, essential for precise alignment during processes such as etching, deposition, and lithography.

3. Robotics and Automation: Belt pulleys are integral components in robotics and automation systems utilized in electronics and semiconductor production. These systems often involve robotic arms or gantries that handle and manipulate components or equipment. Belt pulleys are employed in the motorization and control mechanisms of these robotic systems, enabling precise and repeatable movements. They contribute to the accuracy, speed, and reliability required in tasks such as pick-and-place operations, soldering, and inspection processes.

4. Precision Machining: Belt pulleys are used in precision machining operations within electronics and semiconductor production. They are incorporated into milling machines, lathes, and other machining equipment that fabricate electronic components and semiconductor parts. Belt pulleys drive the cutting tools or spindles, providing the necessary rotational motion for precise material removal and shaping. The speed control and torque conversion capabilities of belt pulleys ensure the optimal performance and accuracy required for manufacturing intricate electronic and semiconductor components.

5. Testing and Inspection Equipment: Belt pulleys are utilized in testing and inspection equipment within the electronics and semiconductor industry. These machines perform various tests, measurements, and inspections to ensure the quality and functionality of electronic components and semiconductor devices. Belt pulleys drive the mechanisms that move the components or devices through different testing or inspection stations. They contribute to the controlled and synchronized movement required for accurate measurements, functional tests, and quality checks.

6. Packaging and Labeling: Belt pulleys are employed in packaging and labeling systems for electronics and semiconductor products. These systems handle the final packaging of electronic components, devices, or integrated circuits. Belt pulleys drive the conveyor belts that transport the packaged products, ensuring their smooth and efficient movement through the packaging and labeling processes. They contribute to the automated and streamlined packaging operations, allowing for high-speed production and consistent product presentation.

7. Maintenance and Serviceability: Belt pulleys contribute to the maintenance and serviceability of equipment used in electronics and semiconductor production. They are designed for easy replacement, adjustment, or inspection, allowing for quick and straightforward maintenance tasks. Properly maintained belt pulleys ensure the reliability and uptime of production equipment, minimizing downtime and optimizing the overall manufacturing process.

In summary, belt pulleys are utilized in the production of electronics and semiconductors for conveyor systems, wafer handling, robotics and automation, precision machining, testing and inspection equipment, packaging and labeling systems, as well as maintenance and serviceability. They contribute to the efficient flow of production, precise positioning of components, accurate machining, reliable testing and inspection, streamlined packaging, and ease of equipment maintenance. Belt pulleys play a vital role in enhancing the precision, efficiency, and reliability of the manufacturing processes involved in electronics and semiconductor production.

belt pulley

Can belt pulleys be used in both simple and complex mechanical systems?

Yes, belt pulleys can be used in both simple and complex mechanical systems. Belt pulleys are versatile components that are widely employed in various applications across different industries. They offer several advantages, such as reliable power transmission, flexibility in speed adjustment, and ease of installation. Here’s a detailed explanation of how belt pulleys can be utilized in both simple and complex mechanical systems:

1. Simple Mechanical Systems: Belt pulleys are commonly used in simple mechanical systems where power needs to be transmitted between two shafts. These systems typically involve straightforward power transmission requirements and relatively uncomplicated machinery. Examples of simple mechanical systems where belt pulleys are utilized include small appliances like fans or blenders, exercise equipment, and simple conveyor systems. In these cases, belt pulleys provide an efficient and cost-effective solution for transmitting power from a motor or engine to drive a specific component or perform a specific task.

2. Complex Mechanical Systems: Belt pulleys are also extensively used in complex mechanical systems that involve multiple components, intricate power transmission requirements, and advanced machinery. These systems often require precise speed control, synchronization of multiple shafts, and the ability to transmit power over long distances. Examples of complex mechanical systems where belt pulleys are employed include large-scale manufacturing machinery, printing presses, industrial robots, and automotive engine systems. In these applications, belt pulleys are crucial in achieving accurate power transmission, maintaining synchronization, and enabling efficient operation of the complex machinery.

3. Speed Adjustment and Variable Power Transmission: Belt pulleys are particularly advantageous in systems that require speed adjustment or variable power transmission. By using pulleys of different sizes or adjusting the position of the belt on the pulleys, the speed and power transmission characteristics can be modified. This flexibility is beneficial in both simple and complex mechanical systems. For example, in a simple mechanical system like a drill press, a belt pulley system allows for speed adjustment to accommodate different drilling requirements. In a complex mechanical system like an assembly line, belt pulleys enable variable speed control to synchronize the movement of multiple components.

4. Adaptability and Customization: Belt pulleys can be easily adapted and customized to suit the specific requirements of both simple and complex mechanical systems. They can be designed and manufactured in various sizes, materials, and configurations to accommodate different shaft diameters, space restrictions, power transmission needs, and environmental conditions. This adaptability makes belt pulleys highly versatile components that can be integrated into diverse mechanical systems, regardless of their complexity.

5. Reliability and Maintenance: Belt pulleys offer reliable and efficient power transmission in both simple and complex mechanical systems. They have a long service life when properly installed and maintained, making them a dependable choice for various applications. Regular maintenance, such as checking for proper tension, alignment, and lubrication, ensures optimal performance and prolongs the lifespan of the belt pulleys in any mechanical system.

In summary, belt pulleys are suitable for use in both simple and complex mechanical systems. They provide efficient power transmission, speed adjustment capabilities, adaptability, and reliability. Whether it’s in a small appliance or a sophisticated industrial machine, belt pulleys play a vital role in transmitting power and enabling the smooth operation of mechanical systems across a wide range of applications and industries.

belt pulley

What advantages do belt pulleys offer for efficient power transmission?

Belt pulleys offer several advantages that contribute to efficient power transmission in a variety of applications. These advantages make belt pulleys a popular choice for transmitting power in numerous industries. Here are some key advantages of using belt pulleys:

1. High Efficiency: Belt pulleys can achieve high power transmission efficiency. The materials used for pulleys, such as metals or composite materials, are selected for their strength and low friction characteristics. This allows for minimal energy loss during power transmission, resulting in efficient operation and reduced energy consumption.

2. Smooth and Quiet Operation: Belt pulleys provide smooth and quiet operation compared to some other power transmission methods. The flexibility of belts helps in dampening vibrations and reducing noise levels. This is particularly beneficial in applications where noise reduction is important, such as in residential areas, offices, and certain types of machinery.

3. Slip Prevention: Belt pulleys offer slip prevention features, ensuring reliable power transmission. The design of the pulley’s groove and the corresponding belt shape create a positive engagement that helps prevent the belt from slipping during operation. This is particularly advantageous in high-torque applications where maintaining a consistent power transfer is crucial.

4. Overload Protection: Belt pulleys can provide a certain degree of overload protection. In the event of sudden load spikes or jamming of the driven system, the belt can slip or deform slightly, absorbing the shock and protecting the machinery from damage. This inherent flexibility acts as a safety feature, preventing catastrophic failures and reducing the risk of equipment breakdown.

5. Misalignment Compensation: Belt pulleys can accommodate minor misalignments between the driving and driven shafts. The flexibility of the belt allows for slight angular and parallel misalignments, which can naturally occur in machinery due to manufacturing tolerances, thermal expansion, or other factors. This ability to compensate for misalignment helps to minimize stress on bearings and prolong the lifespan of the system.

6. Speed Variation: Belt pulleys provide the flexibility to achieve different speed ratios by simply changing pulley sizes or adjusting the position of variable speed pulleys. This feature allows for speed variation and control in various applications, facilitating the optimization of machine performance and enabling adaptability to different operating conditions.

7. Cost-Effective: Belt pulleys are generally cost-effective compared to some other methods of power transmission. They are relatively simple in design, easy to manufacture, and require less precision than certain alternatives. Additionally, belts are generally less expensive to replace than other types of power transmission components, resulting in lower maintenance costs.

Overall, belt pulleys offer advantages such as high efficiency, smooth and quiet operation, slip prevention, overload protection, misalignment compensation, speed variation, and cost-effectiveness. These advantages make belt pulleys a reliable and versatile choice for efficient power transmission in a wide range of applications across various industries.

China manufacturer Poly Chain Gt 2 Timing Belt Pulley   pulley driveChina manufacturer Poly Chain Gt 2 Timing Belt Pulley   pulley drive
editor by CX