Product Description
Product Description
Aluminum/C45 Timing Belt Pulley
Product Name | Aluminium Timing Pulley MXL XL L H XH XXH T2.5 T5 T10 AT5 AT10 S2M S3M S5M S8M GT2 GT3 GT5 3M 5M 8M Tooth timing Belt Pulley | |
Teeth profile | Trapezoidal toothed | MXL, XXL, XL, L, H, XH, XXH |
T-toothed | T2.5, T5, T10, T20 | |
Arc toothed | HTD3M, HTD5M, HTD8M, HTD14M, HTD20M, Gt2, Gt3, Gt5 | |
S-toothed | S2M, S3M, S4.5M, S5M, S8M, S14M | |
Parabolic-toothed | P2M, P3M, P5M, P8M, P14M | |
Y-toothed | G2M, G3M, G5M, Y8M | |
Teeth Quantity | 10-150 teeth or customized | |
Inner Bore | 2-200mm H7 precision or customized | |
Belt width | 4mm, 6mm, 9mm, 10mm, 12mm, 15mm, 20mm, 25mm, 30mm, 40mm, 50mm, 1/4”, 5/16”, 3/8”, 1/2”, 3/4”, 1”, 1.5”, 2”or customized | |
Material | carbon steel C45, Aluminum 6061, 6082 | |
Surface treatment | Anodize,Black Oxide,Phosphate, Galvanization, Nitriding, Dichromate |
Detailed Photos
Timing pulley used on conveyor roller
Workshop
Equipments:
Lathe machine, Hobbing machine,Drilling machine,CNC machine,Milling machine, etc
FAQ
Q1: Are you trading company or manufacturer ?
A: We are factory.
Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days.
2.Production Lead-times: 30-45 days after order confirmed.
Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO |
---|---|
Pulley Sizes: | Timing Belt Pulley |
Manufacturing Process: | Hobbing Teeth |
Material: | Aluminum |
Surface Treatment: | Anodizing |
Application: | Chemical Industry, Grain Transport, Mining Transport, Power Plant |
Customization: |
Available
| Customized Request |
---|
Can flat belt pulleys be integrated into conveyor systems for material handling?
Yes, flat belt pulleys can be effectively integrated into conveyor systems for material handling. Here’s a detailed explanation:
Conveyor systems are widely used in industries for the efficient movement of materials from one location to another. Flat belt pulleys offer several advantages when incorporated into conveyor systems:
1. Power Transmission:
Flat belt pulleys are used as the driving pulleys in conveyor systems. They transmit power from a motor or an engine to the belt, enabling the movement of materials along the conveyor. The large contact area and grip between the pulleys and the belt ensure efficient power transfer, allowing for the transportation of various types of materials.
2. Load Capacity:
Flat belt pulleys are designed to handle different load capacities. They can be selected based on the specific requirements of the conveyor system, such as the weight and type of materials being transported. The pulley’s diameter and width are chosen to provide adequate support and load-bearing capacity for the belt.
3. Belt Tracking:
Proper belt tracking is crucial in conveyor systems to prevent belt misalignment and ensure smooth operation. Flat belt pulleys are designed with features such as flanges or guides to help keep the belt centered and aligned. This ensures that the materials are conveyed along the desired path without any disruptions or spillage.
4. Belt Tensioning and Adjustability:
Flat belt pulleys in conveyor systems are equipped with tensioning mechanisms to maintain the appropriate belt tension. These mechanisms, such as idler pulleys or tensioning screws, allow for easy adjustment of the belt tension to accommodate variations in load or belt stretch over time. Proper tensioning ensures efficient power transmission and prevents belt slippage.
5. Versatility:
Flat belt pulleys offer versatility in conveyor system design. They can be used in straight conveyors, curved conveyors, or inclined conveyors, allowing for the transportation of materials in various directions and angles. The flexibility of flat belts also enables efficient movement around pulleys of different sizes and configurations.
6. Maintenance and Replacement:
Flat belt pulleys in conveyor systems are relatively easy to maintain and replace. Regular inspection and maintenance of the pulleys, including checking for proper alignment and tension, can help prevent issues and ensure efficient operation. When replacement is necessary, flat belts and pulleys are readily available, minimizing downtime and optimizing material handling efficiency.
Consequently, flat belt pulleys are commonly integrated into conveyor systems for material handling due to their efficient power transmission, load capacity, versatility, and ease of maintenance. They are widely used in industries such as manufacturing, warehousing, mining, agriculture, and logistics.
How does the design of a flat belt pulley affect its performance?
The design of a flat belt pulley plays a crucial role in determining its performance characteristics. Here’s a detailed explanation:
1. Groove Profile:
The groove profile of a flat belt pulley affects the grip and traction between the pulley and the belt. Different groove profiles, such as V-shaped, U-shaped, or flat, are used depending on the type of belt being used. The groove profile should be designed to optimize the belt’s contact area and prevent slippage, ensuring efficient power transmission.
2. Diameter and Width:
The diameter and width of the pulley directly impact its mechanical advantage and power transmission capabilities. Larger pulley diameters result in higher belt speeds and increased power transmission capacity, while wider pulleys provide better belt support and reduced belt stress.
3. Material Selection:
The choice of material for the pulley affects its strength, durability, and resistance to wear and corrosion. Commonly used materials include steel, cast iron, aluminum, and plastics. The material selection should be based on factors such as the load capacity, operating environment, and desired lifespan of the pulley.
4. Balance and Alignment:
A well-designed flat belt pulley should be properly balanced and aligned to minimize vibration and ensure smooth operation. Imbalances or misalignment can result in increased noise, reduced efficiency, and premature wear of the pulley and belt.
5. Tensioning Mechanism:
The design of the tensioning mechanism, such as an idler pulley or tensioning screw, can impact the ease of belt tensioning and the ability to maintain proper belt tension over time. A well-designed tensioning mechanism ensures consistent and reliable power transmission by maintaining the optimal tension in the belt.
6. Flanges and Hub Configuration:
The presence of flanges or the configuration of the hub can affect the stability and alignment of the pulley. Flanges help to keep the belt contained within the pulley, preventing lateral movement and ensuring proper tracking. The hub configuration should provide a secure and accurate connection to the shaft, minimizing slippage or misalignment.
7. Surface Finish and Coating:
The surface finish and coating of the pulley can influence its friction characteristics, wear resistance, and corrosion protection. Smooth surface finishes and appropriate coatings can reduce friction, extend the life of the pulley and belt, and improve overall performance.
By carefully considering and optimizing these design factors, flat belt pulleys can be engineered to deliver efficient and reliable power transmission, minimize belt wear, and ensure long-lasting performance in various applications.
What advantages do flat belt pulleys offer for power transmission?
Flat belt pulleys offer several advantages for power transmission in various applications. Here’s a detailed explanation:
1. Simplicity:
Flat belt pulley systems are relatively simple in design and operation. They consist of a pulley and a flat belt, which are easy to install, maintain, and replace. The simplicity of the system makes it accessible and user-friendly, requiring minimal training or expertise to operate and maintain.
2. Cost-effectiveness:
Flat belt pulley systems are often cost-effective compared to other power transmission systems. The components, such as the pulleys and belts, are generally affordable and readily available. Additionally, the installation and maintenance costs are typically lower compared to more complex systems, making flat belt pulleys a cost-efficient choice for power transmission in certain applications.
3. High Speed Capability:
Flat belt pulleys can operate at high speeds, making them suitable for applications that require rapid power transmission. The flat belt design allows for smooth and efficient power transfer, reducing the risk of slippage or loss of power even at high rotational speeds.
4. Shock Absorption:
Flat belt pulleys offer good shock absorption properties due to the flexibility of the flat belt. The belt can absorb and dampen sudden shocks or vibrations, protecting the pulley system and the connected components from damage. This is particularly advantageous in applications where the machinery may experience variable or intermittent loads.
5. Compatibility:
Flat belt pulleys are compatible with a wide range of machinery and equipment. They can be easily integrated into existing systems without requiring significant modifications or adaptations. This compatibility makes flat belt pulleys a versatile choice for power transmission in various industries.
6. Misalignment Tolerance:
Flat belt pulleys can tolerate slight misalignments between the driving and driven shafts. The flexibility of the flat belt allows for some degree of deviation in alignment without affecting the overall performance or causing excessive wear on the components. This tolerance to misalignment can be beneficial in applications where precise alignment is challenging to achieve or maintain.
7. Smooth and Quiet Operation:
Flat belt pulleys provide smooth and quiet operation, contributing to a more comfortable and less noisy working environment. The flat belt design reduces vibrations and noise generated during power transmission, resulting in smoother machinery operation and reduced noise pollution.
8. Energy Efficiency:
The efficiency of power transmission in flat belt pulley systems can be quite high. With proper tensioning and adequate belt grip on the pulley, the system minimizes energy losses due to slippage or friction. This energy efficiency can lead to cost savings and improved overall equipment performance.
In summary, flat belt pulleys offer advantages such as simplicity, cost-effectiveness, high-speed capability, shock absorption, compatibility, misalignment tolerance, smooth and quiet operation, as well as energy efficiency. These advantages make flat belt pulleys suitable for various applications where these characteristics are desired or required.
editor by CX
2024-04-13