China OEM China Suppliers OEM CNC Machining Parts Cast Iron Timing Belt Pulley with high quality

Product Description

China Suppliers OEM CNC Machining Parts cast iron Timing Belt Pulley

 

V belt pulley specifications

·  European standards : 

    a) V-belt pulley for taper bushing: SPZ, SPA, SPB, SPC    

    b) Adjustable speed V-belt pulleys and variable speed pulleys              

    c) Flat belt pulleys and conveyor belt pulleys
     
    d) Have many models , cannot show all together here , need to know learn more ,contact us .

500 – 1 x SPZ – 2517 Taper-v-belt pulley
50 – 2 x SPZ – 1008 rü 26 Taper-v-belt pulley
56 – 2 x SPZ – 1108 rü 26 Taper-v-belt pulley
60 – 2 x SPZ – 1108 rü 26 Taper-v-belt pulley
63 – 2 x SPZ – 1108 bü Taper-v-belt pulley
67 – 2 x SPZ – 1108 bü Taper-v-belt pulley
71 – 2 x SPZ – 1108 Taper-v-belt pulley
75 – 2 x SPZ – 1210 bü Taper-v-belt pulley
80 – 2 x SPZ – 1210 bü Taper-v-belt pulley
85 – 2 x SPZ – 1610 bü Taper-v-belt pulley
90 – 2 x SPZ – 1610 bü Taper-v-belt pulley
95 – 2 x SPZ – 1610 bü Taper-v-belt pulley
100 – 2 x SPZ – 1610 bü Taper-v-belt pulley
106 – 2 x SPZ – 1610 bü Taper-v-belt pulley
112 – 2 x SPZ – 1610 bü Taper-v-belt pulley
118 – 2 x SPZ – 1610 bü Taper-v-belt pulley
125 – 2 x SPZ – 1610 bü Taper-v-belt pulley
132 – 2 x SPZ – 1610 bü Taper-v-belt pulley
140 – 2 x SPZ – 1610 bü Taper-v-belt pulley
150 – 2 x SPZ – 2012 bü Taper-v-belt pulley
160 – 2 x SPZ – 2012 bü Taper-v-belt pulley
170 – 2 x SPZ – 2012 bü Taper-v-belt pulley
180 – 2 x SPZ – 2012 bü Taper-v-belt pulley
190 – 2 x SPZ – 2012 bü Taper-v-belt pulley
200 – 2 x SPZ – 2012 bü Taper-v-belt pulley

SPB-1
PULLEY MODEL TAPER BUSH WEIGHT F R L P
SPB100-1 1610 0.9 25   25  
SPB106-1 1610 1.1 25   25  
SPB112-1 1610 1.2 25   25  
SPB118-1 1610 1.3 25   25  
SPB125-1 1610 1.5 25   25  
SPB132-1 1610 1.7 25   25  
SPB140-1 1610 1.8 25   25  
SPB150-1 1610 2.1 25   25  
SPB160-1 1610 2.5 25   25  
SPB170-1 1610 2.9 25   25  
SPB180-1 1610 3.2 25   25  
SPB190-1 2012 3.8 25   32 3.5
SPB200-1 2012 4.2 25   32 3.5
SPB212-1 2012 4.3 25   32 3.5
SPB224-1 2012 4.7 25   32 3.5
SPB236-1 2012 5.1 25   32 3.5
SPB250-1 2012 5.7 25   32 3.5
SPB280-1 2012 6 25   32 3.5
SPB300-1 2012 7.1 25   32 7
SPB315-1 2012 7.5 25   32 3.5

FAQ

1.Q: What is your Trade term ?
A: FOB HangZhou Or HangZhou port
 
2.Q: Can you offer OEM ?
A: Yes , OEM are always welcomed . Please emial us relevant information .
 
3.Q: Can I get some samples before placing order ?
A: Yes, We will offer 1-2 pcs samples free of charge . Due to different situation , some samples will be charged . If you need further information about our sample policy , please contact us .
 
4.Q: What is your MOQ ?
A: MOQ of most our products is 1000 pcs , different items maybe different .
 
5.Q: How can you ensure the quality inspection?
A: On the order process,we have inspection standard before delivery and will supply you the pictures.

6. Q: What about the lead time for mass production ?
     A: It depends on the order quantity and the season you place the order . In general , our lead time is     about 15~25 days , depends on products

Our service :
Sample service:
-We provide free samples for our existing products range. 
 -Sample and tooling charges need if special design needed, the exact charges depends on  your final design and product. 
-We will return sample charges to you once place an order, and return the tooling charges      once the order quantity reach to certain quantity. 
-It will take 2-3days for free samples.
Customized services:
– We provide OEM and ODM process Service, also Provide product sketch. 
After-sale services:
– For most of our products, we provide one year warranty.If any items broken for unartificial  reason, we can replace the items after having the approve. We guarantee your satisfaction with all our merchandise. The feedbacks will be paid more attentions from customers constant, we will solve the problems timely.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: OEM
Manufacturing Process: Casting
Material: Iron
Surface Treatment: Polishing
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant, OEM
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

belt pulley

What are the maintenance requirements for belt pulleys in industrial settings?

In industrial settings, proper maintenance of belt pulleys is essential to ensure their optimal performance, longevity, and safe operation. Here’s a detailed explanation of the maintenance requirements for belt pulleys in industrial settings:

1. Regular Inspection: Belt pulleys should be inspected regularly to identify any signs of wear, damage, or misalignment. Inspect the pulleys for cracks, corrosion, excessive wear on the grooves, or any other visible abnormalities. Check for proper alignment by examining the position of the pulleys relative to each other and their corresponding belts. Regular inspections help detect issues early on and prevent further damage or failures.

2. Lubrication: Proper lubrication is crucial for the smooth operation of belt pulleys. Lubricate the pulley bearings according to the manufacturer’s recommendations. This helps reduce friction, heat generation, and wear on the bearings. Use the appropriate lubricant and follow the recommended lubrication intervals to ensure optimal performance and extend the life of the pulleys.

3. Tension Adjustment: Maintaining proper belt tension is vital for the efficient and reliable operation of belt pulleys. Check the tension of the belts regularly using the manufacturer’s guidelines or recommended tensioning devices. Adjust the tension as needed to ensure the belts are neither too loose nor too tight. Proper tensioning allows for effective power transmission, minimizes belt slippage, and reduces wear on the belts and pulleys.

4. Belt Replacement: Over time, belts may wear out or become damaged. Regularly inspect the belts for signs of wear, cracking, fraying, or excessive stretching. If any of these issues are present, replace the belts promptly with new ones of the correct size and type. Using worn or damaged belts can lead to reduced performance, increased risk of pulley damage, and potential system failures.

5. Cleaning: Keep the belt pulleys clean and free from debris, dust, and dirt that may accumulate over time. Use appropriate cleaning methods, such as brushing or compressed air, to remove any contaminants that could affect the pulley’s performance or the grip of the belts. Clean pulleys contribute to better belt traction, reduce the risk of slippage, and improve overall system efficiency.

6. Alignment Correction: Proper pulley alignment is crucial for efficient power transmission and to prevent premature wear. If misalignment is detected during inspections or if the belts are not running smoothly, take corrective measures to align the pulleys correctly. Use alignment tools, such as laser alignment devices, to ensure precise alignment of the pulleys. Proper alignment minimizes belt wear, reduces noise and vibration, and extends the life of the pulleys and belts.

7. Safety Measures: When performing maintenance on belt pulleys, always adhere to safety procedures. Follow lockout/tagout protocols to isolate the equipment from power sources before inspecting or working on the pulleys. Use appropriate personal protective equipment (PPE) to protect against potential hazards. Ensure that maintenance personnel are trained in safe maintenance practices and are familiar with the specific procedures for working with belt pulleys.

8. Record Keeping: Maintain a record of maintenance activities and inspections performed on belt pulleys. This includes dates of inspections, lubrication, tension adjustments, belt replacements, and any corrective actions taken. Keeping a maintenance log helps track the history of maintenance activities, identify recurring issues, and plan future maintenance tasks effectively.

In summary, the maintenance requirements for belt pulleys in industrial settings include regular inspections, proper lubrication, tension adjustment, belt replacement, cleaning, alignment correction, adherence to safety measures, and maintaining a maintenance record. By following these maintenance requirements, industrial facilities can ensure the optimal performance, longevity, and safe operation of belt pulleys, contributing to the overall efficiency and reliability of their industrial processes.

belt pulley

How does the size and design of a belt pulley impact its performance?

The size and design of a belt pulley have a significant impact on its performance in power transmission systems. The size refers to the dimensions of the pulley, such as its diameter and width, while the design encompasses factors like the groove profile, material selection, and overall construction. Here’s a detailed explanation of how the size and design of a belt pulley impact its performance:

1. Speed and Power Transmission: The size of a belt pulley directly affects the speed and power transmission capability of the system. A larger pulley diameter results in higher belt speeds and increased power transmission capacity. On the other hand, a smaller pulley diameter allows for slower speeds and reduced power transmission. The selection of an appropriate pulley size depends on the desired speed and torque requirements of the application.

2. Belt Tension and Grip: The size and design of a belt pulley influence the tension and grip between the belt and pulley. A larger pulley diameter increases the angle of wrap, which improves the belt’s grip on the pulley and enhances power transmission efficiency. Additionally, the width of the pulley affects the contact area with the belt, allowing for higher load-carrying capacity. Proper belt tension and grip are crucial for preventing belt slippage, maximizing power transfer, and ensuring reliable operation.

3. Speed Ratio: The size and design of the driving and driven pulleys determine the speed ratio between them. By selecting pulleys of different sizes or varying the number of grooves, the speed ratio can be adjusted. This is important in applications where specific speed requirements need to be met, such as in machinery that requires different operating speeds for various operations. The design of the pulleys, including the groove profile and pitch diameter, must be considered to achieve the desired speed ratio.

4. Belt Life and Wear: The size and design of a belt pulley can impact the life and wear characteristics of the belt. Improper pulley sizing or design can lead to excessive belt tension, uneven belt loading, or misalignment, resulting in premature wear and failure of the belt. A well-designed pulley with appropriate dimensions, smooth groove profiles, and proper alignment reduces belt stress and wear, prolonging the belt’s lifespan and reducing maintenance requirements.

5. Noise and Vibration: The size and design of a belt pulley can influence the noise and vibration levels in the power transmission system. Proper pulley size selection and design considerations, such as balancing the pulley, ensuring concentricity, and minimizing runout, help reduce vibration and noise generation. This improves overall system performance, operator comfort, and reduces the potential for component fatigue or damage.

6. Material Selection and Construction: The design of a belt pulley includes material selection and construction considerations. Different materials, such as steel, cast iron, aluminum, or composites, offer varying levels of strength, durability, and resistance to factors like corrosion or extreme temperatures. The design may also include features like hubs, keyways, or flanges, which enhance the pulley’s performance and facilitate proper installation and alignment in the system.

Overall, the size and design of a belt pulley play a crucial role in determining its performance in power transmission systems. Factors such as speed and power transmission capability, belt tension and grip, speed ratio, belt life and wear, noise and vibration levels, and material selection all depend on the proper sizing and design of the pulley. Attention to these factors ensures optimal performance, efficiency, and reliability in belt-driven applications.

belt pulley

What is a belt pulley, and how is it used in mechanical systems?

A belt pulley is a mechanical device used in various systems to transmit power and motion between rotating shafts. It consists of a wheel with a grooved rim, known as the pulley, that is connected to a shaft. The pulley is typically made of materials such as cast iron, steel, or aluminum. It is used in conjunction with a belt or a rope to transfer rotational motion from one shaft to another. Here’s a detailed explanation:

A belt pulley is essential in mechanical systems for the following purposes:

  • Power Transmission: The primary function of a belt pulley is to transmit power between rotating shafts. It connects the driving shaft (input) to the driven shaft (output) through a belt or a rope. When the driving shaft rotates, the belt or rope engages with the grooves on the pulley, causing the pulley and the driven shaft to rotate. This allows power to be transferred from the driving shaft to the driven shaft, enabling the operation of various mechanical components or systems.
  • Speed Control: Belt pulleys are used to control the rotational speed of driven shafts. By varying the size or ratio of the pulleys connected by the belt, the rotational speed can be adjusted. Using different-sized pulleys, it is possible to increase or decrease the speed of the driven shaft compared to the driving shaft. This speed control capability is beneficial in applications where different rotational speeds are required for specific operations or to match the requirements of different components in a system.
  • Directional Change: Belt pulleys also enable the change of direction in mechanical systems. By arranging multiple pulleys with belts or ropes in a system, the rotational motion can be redirected. For example, a system with two pulleys connected by a belt can change the direction of the driven shaft compared to the driving shaft. This directional change allows for the transmission of power and motion in desired orientations, enabling the operation of mechanical components or systems in different directions.
  • Tension Control: Belt pulleys play a role in maintaining proper tension in belt-driven systems. The tension in the belt is important to ensure a secure and reliable connection between the pulleys. Pulleys with adjustable features, such as tensioning systems or idler pulleys, help maintain the optimal tension in the belt. Proper tension control prevents belt slippage, ensures efficient power transmission, and reduces wear on the belt and pulley surfaces.
  • Noise and Vibration Reduction: Belt pulleys contribute to noise and vibration reduction in mechanical systems. The design of the pulley, including the groove profile and surface finish, can help minimize noise and vibration generated during operation. Additionally, proper alignment and tensioning of the belt ensure smoother engagement with the pulley, reducing noise and vibration levels. This is particularly important in applications that require quiet operation or where excessive vibrations can affect system performance or operator comfort.
  • Compatibility and Interchangeability: Belt pulleys offer compatibility and interchangeability benefits in mechanical systems. They provide a flexible and modular approach to power transmission, allowing different pulleys to be easily interchanged or replaced based on specific requirements. This versatility enables system designers and operators to adapt and modify mechanical systems more efficiently, making it easier to accommodate changes in load, speed, or other operational parameters.

In summary, a belt pulley is a mechanical device used for power transmission and motion control in various mechanical systems. It connects rotating shafts through belts or ropes, allowing power to be transmitted from one shaft to another. Belt pulleys provide speed control, directional change, tension control, noise and vibration reduction, as well as compatibility and interchangeability benefits. By utilizing belt pulleys, mechanical systems can efficiently transfer power, control speeds, and enable the operation of different components or systems in desired directions.

China OEM China Suppliers OEM CNC Machining Parts Cast Iron Timing Belt Pulley   with high quality China OEM China Suppliers OEM CNC Machining Parts Cast Iron Timing Belt Pulley   with high quality
editor by CX